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Question 1

Getting Crabby

(20 points)

Born from a supernova in 1054, the Crab Nebula has the distinction of being the only

supernova remnant on the Messier Catalogue. Today, the Crab Nebula is known to be one of

the harder winter Messier objects to observe: small scopes typically only reveal a dim glow even

in good skies. Yet, plainly it was bright enough in the past for Charles Messier to mistake as

a comet despite his mediocre telescope (by modern standards). This leads us to the question:

how much easier was the Crab Nebula to observe in the past? Let us rewind the clock. . .

The table below summarises some of the current known information about the Crab pulsar.

Characteristic Symbol Value

Apparent magnitude m(V ) +16.5

Distance d 1.9 kpc

Mass M 1.4M�

Radius R 10 km

Rotational period P 33 ms

Temperature T 1.6× 106 K

Table 1: Some characteristics of the Crab pulsar.

(i) [1 point] What is the current luminosity of the Crab pulsar solely due to black-body

radiation LB?

Solution.

LB = 4πR2σT 4

= 4π(10 km)2σ(1.6× 106 K)

= 4.67× 1026 W .

For comparison, the entire Crab Nebula has been determined to have a current luminosity

L of 5 × 1031 W (Kennel and Coroniti, 1984). The Crab Nebula would have quickly cooled

to background temperatures if the Crab Pulsar’s black-body radiation was the sole source of

thermal energy.

An alternative source of energy is rotational magnetic braking. We know that pulsars

are rapidly rotating and have strong magnetic fields. As magnetic field lines move past the

surrounding material, the surrounding material exerts a force that opposes this motion (by

Lenz’s law). The net result is that the pulsar loses rotational kinetic energy to its surroundings,

in a process known as spin-down.

Suppose we have an object spinning with period P . It is known that the rotational kinetic
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energy of an object is related to its angular velocity ω by the relation

Erot =
1

2
Iω2,

where I is the moment of inertia. For the case of a perfectly uniform sphere, I = 2
5MR2, where

M and R are the mass and radius of the sphere respectively.
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(ii) [2 points] Assume that the Crab Pulsar is perfectly spherical with a constant moment

of inertia. Show that the amount of energy emitted per second due to magnetic braking

Lspin is given by

Lspin = 4π2IP−3dP

dt
,

where dP
dt is the change in the pulsar’s period as the pulsar ages.

(Hint: Think of the physical picture. As the pulsar slows, the rotational kinetic energy

of the pulsar is being lost to space, which is observed as Lspin. This implies that Lspin =

− d
dt [Erot].)

Solution. We have

Erot =
1

2
Iω2 =

1

2
I

(
2π

P

)2

= 2π2IP−2.

When the pulsar decelerates, its moment of inertia remains unchanged (aka mass/radius

are roughly constant). This leaves us with a simple differentiation problem, i.e.

Lspin = − d

dt
[2π2IP−2] = 4π2IP−3dP

dt
.

(iii) For the case of the Crab Pulsar, dP
dt = 4.22× 10−13 (seconds per second).

(a) [1 point] Hence or otherwise, calculate Lspin.

(b) [1 point] By comparing this value to LB and L, suggest if rotational magnetic braking

is sufficient to power the Crab Nebula.

Solution. Plugging in values,

Lspin = 4π2

(
2

5
× 1.4M� × (10 km)2

)
(33 ms)−3(4.22× 10−13) = 5.16× 1031 W .

Therefore,

L ≈ Lspin � LB.

Thus, we conclude that rotational magnetic braking is the dominant source of energy for

the Crab Nebula, and is sufficient.

Under suitable assumptions, the period of a pulsar and its spin-down rate are related by the

formula

τ =
P

2× dP
dt

,

where τ is the characteristic age of the pulsar.

(iv) [3 points] Assuming that the characteristic age of the Crab pulsar is equal to its age t (i.e.
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τ = t), prove that the relationship between P and t is given by

P = K
√
t,

where K is a constant. You do not need to compute a value for K. (its numerical value

does not need to be found). [3 marks]

Solution. We have dP
dt = P

2t . Integrating both sides w.r.t. t, we have

ˆ
1

P
dP =

ˆ
1

2t
dt.

Then,

lnP = 0.5 ln t+ C,

for some constant C. Therefore we have

P = e0.5 ln t+C = eCeln
√
t = K

√
t,

where we have written K = eC . This completes the proof.

We are interested in seeing how the luminosity of the nebula changes with time, so let us

figure that out next.

(v) [1 point] Let the luminosity of the nebula at time t be Lt. For simplicity, let us assume

for the rest of this question that Lt = Lspin.

Express Lt as a function of t, I, K, and other numerical constants only.

Solution. We have

LT = 4π2IP−3dP

dt
= 4π2I(K

√
t)−3 K

2
√
t

=
2π2I

K2t2
.

(vi) [1 point] Charles Messier first observed the Crab Nebula in 1758. What is the luminosity

of the Crab Nebula now compared to then? Express your answer as a percentage.

Solution. In 1758, the Crab was 704 years old. In 2018, it is now 964 years old. Hence,

Lt ∝
1

t1.5
=⇒ L964

L704
=

(
704

964

)2

≈ 53.3%.

(vii) [2 points] Let your numerical answer in Part (vi) be Z. Does this mean that the nebula

right now (as a whole) is visually Z times as bright as it was in 1758? Why or why not?

Solution. No. Recall that luminosity considers the emission of the nebula across all

wavelengths. It is perfectly possible (indeed likely) that the emission profile of the nebula

has changed over time, such that it now emits relatively more radiation in certain types

of light (e.g. infrared) as compared to others.
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This is all well and good, but as seasoned astronomers, you should be familiar that total

brightness is not worth much. Rather, in order to gauge visibility, what matters more is surface

brightness. To this end, let us now attempt to find out how the average surface brightness of

the Crab has changed.

The Crab Nebula itself currently has a radius of 5.5 light years and is expanding at 1500 km s−1,

and we know the expansion rate is being slowed by gravity. We also know that the entire nebula

has a mass of 4.6 solar masses, separate from the pulsar itself. While the nebula is an extended

object, given that it is spherically symmetric, we can apply the Shell Theorem. The Shell The-

orem allows us to treat the nebula as decelerating due to a massive “point mass” of mass M

located at its centre. In this case, M refers to the combined mass of the nebula and the central

pulsar.

(viii) [1 point] Let the radius of the nebula be R. Consider a test mass expanding with the

edge of the nebula (a.k.a. R). Write down the second-order differential equation relating

acceleration d2R
dt2

to M , R, and other constants where appropriate.

(Hint: Analyse the forces involved.)

Solution. Since gravity is the only force,

d2R

dt2
= −GM

R2
.

(xi) [3 points] Find a relationship between the expansion velocity v and R, including any other

appropriate constants. Label and explain any constants that you introduce.

(Hint: While it may be tempting to solve the differential equation in Part (viii) to obtain

an answer, there is another (and better) way to approach this question.)

Solution. NB: The existing literature all assume a constant expansion rate. This problem

shows why astronomers do so: a model with gravitational forces only is very tedious to

solve. Furthermore, we can show that this approximation incurs negligible error in this

instance. The proof of this is given at the end of the solution.

We can either deal with this problem by solving the DE, or energy conservation. As

foreshadowed by the hint, you’ll find that energy conservation is far easier to work with.

Method 1: From energy conservation, KE + GPE = TE. Hence,

TE =
1

2
mv2 − GMm

R
.

Note that TE is the total energy and is constant (we cannot assume TE = 0). Dividing

by m,

TE

m
=

1

2
v2 − GM

R
.

Simplifying,

v =

√
2× TE

m
+

2GM

R
.
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Method 2: We solve the DE. Recall that by chain rule,

a :=
dv

dt
=
dv

dR
· dR
dt

=
dv

dR
v.

We now compute the integral
´
a dR in two ways. We have

ˆ
a dR =

ˆ
−GM
R2

dR =
GM

R
+A,

where A is a constant. Alternatively,

ˆ
a dR =

ˆ
dv

dR
v dR =

ˆ
v dv =

v2

2
+B,

where B is again a constant. Therefore,

GM

R
=
v2

2
+ C,

where C is a constant, so that

v =

√
C +

2GM

R
.

This is the same equation as above with C = 2×TE
m , which should not be too surprising.

Take note that the constant of integration C has a physical interpretation – it is directly

related to the total energy of the system. This would not have been obvious if we had not

used the energy conservation approach first.

Proof of approximately constant expansion rate (optional): Given the given values of M ,

R, and v presently, we can substitute in the values to find that C = 2.25× 1012 m2 s2.

Then,

dR

dt
= v =

√
C +

2GM

R
,

so that
ˆ

1√
C + 2GM

R

dR =

ˆ
dt.

Rewriting the LHS yields

ˆ √
R√

RC + 2GM
dR =

ˆ
dt.

This is not a nice integral, and we will not obtain a “clean” explicit solution for R. (Note

that it can be integrated – one starts with setting z =
√
R, then following through with

a series of substitutions.) We instead find the first-order Taylor series approximation of v

with respect to the present day. This is permissible since for the purposes of the question

(comparing what Messier saw to what we see now), we are not moving too far away from
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the present day. We then have:

dv

dR
= − GM

R2
√
C + 2GM

R

≈ 1.5× 106 − 1.961× 10−19(R− 5.2× 1016)

≈ 1.5× 106 − 1.961× 10−19R.

This Taylor series tells us why astronomers typically assume a constant expansion velocity:

1.961 × 10−19 is extraordinarily small. For the values we’re considering, 1.961 × 10−19R

has order of millimetres per second, which is tiny compared to the 1500 km s−1 expansion

rate. Indeed, despite the 260 year interval involved in our question, the error involved in

this approximation is on the order of 100000 km. This is negligible when we recall the

current radius of the nebula (5.5 light years)!

It can be shown that if we plug in the given values and adopt certain simplifying assumptions,

the expansion velocity of the nebula in the recent past is approximately constant. While the

proof of this is left as an exercise for the reader (to be done at the reader’s own leisure and

certainly not within this DRQ’s time limit), an important implication is that the current radius

of the nebula R obeys the relationship

R ≈ X + vt,

where X denotes the extrapolated size of the nebula initially.

(x) [1 point] What is the value of X in meters?

Solution. Substituting the present-day values of R, v, and t, we obtain X = 6.4× 1015 m.

(xi) [1 point] Assume that the Crab Nebula is stationary relative to us. Hence or otherwise,

what is the angular size of the nebula now compared to 1758? Express your answer as a

percentage.

Solution. Let A be the apparent size of the nebula. By inspection, it should be apparent

that A ∝ R2. With

R704 = 6.4× 1015 m +1.6× 106(704 years) = 4.2 ly,

we have

A964

A704
=
R2

964

R2
704

≈
(

5.5

4.2

)2

= 171%.

Recall that the apparent surface brightness of an object S has units of magnitude per square

arcminute and is given by

S = m+ 2.5 lgA,
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where lg here indicates the base-10 logarithm log10, and A is the apparent size of the nebula.

Assume that as in part (vii) that the nebula was visually Z times brighter in 1758 than in 2018.

(xii) [2 points] Calculate the change in average surface brightness since 1758, in terms of mag-

nitude per unit area.

Solution. We have

S704 = m704 + 2.5 lgA704,

S964 = m964 + 2.5 lgA964,

∆S = ∆m+ 2.5 lg
A964

A704
.

From the formula in the Formula Booklet,

∆m = 2.5 lg
L704

L964
= −2.5 lg

L964

L704
= 0.6825.

Therefore,

∆S = 0.6825 + 2.5 lg

(
5.5

4.2

)2

= 1.268.

Mathematically speaking, if we compared an apparent unit area of the Crab Nebula

between 1758 and 2018, the Crab Nebula now would have a surface brightness of 31%

of what it had in in 1758. This is a noticeable change: it’s like comparing the brightness

of Vega to that of Deneb!
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Question 2

Are Black Holes Really Black?

(20 points)

Part 1: Gravitational Lensing (Sub-total: 10 points)

Gravitational lensing is a phenomenon where light from a distant source may be deflected by

the curvature of space-time caused by a massive lensing object close to or in the line of sight

between an observer and a distant object. We will take the lensing object to be a black hole in

this problem. Take a look at the following illustration:

Figure 1: Path taken by light under the Schwarzschild metric. Note that the curvature in this
diagram is greatly exaggerated.

The illustration above depicts the path that is taken by light (photon) under Schwarzchild

metric, which is a metric that corresponds to the solution of Einstein’s field equations with

the assumption of chargeless and non-spinning perfectly spherical object and zero cosmological

constant. It can be shown that the path can be described by the following equation in polar

coordinate:

1

r
=

cosφ

r0
− rs

2r2
0

cos2 φ+
rs
r2

0

,

where rs is the Schwarzschild radius of the black hole (i.e. the radius of the event horizon of the

black hole), r0 is the minimum distance from the path to the gravitating object, r is the distance

from the object to a point along the path and φ is the angle between the line connecting the

object with a point along the path and the line connecting the object with the point of closest

approach.

(i) [2 points] By using Newtonian mechanics and equating the escape velocity at the Schwarzschild

radius to the speed of light, derive the expression for the Schwarzschild radius, rs, as given

in the formula book. This derivation is heuristic: the steps are invalid, but it happens to

be true. Can you explain why is it invalid?
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Solution. We have

1

2
mv2

esc −
GMm

rs
= 0.

Since we have vesc = c, hence we get

rs =
2GM

c2
.

It is invalid because Newtonian mechanics fails at the speed comparable to the speed of

light, so our equation of the conservation of energy is not applicable to photons. The

result just happens to be consistent with general relativity.

You may assume that rs � r0 such that the deflection of light from its original path is small.

(ii) [1 point] What is the value of φ (in radians) when the photon is very far and the mass of

the black hole approaches 0?

Solution. With r =∞ and rs
r20

= 0, we have

cosφ

r0
= 0.

Hence, φ = ±π
2 .

(iii) [1 point] Starting from the equation given, show that the path of the photon is a straight

line if there is no black hole, as it should be.

Solution. We have

1

r
=

cosφ

r0
,

i.e. r0 = r cosφ. This is an equation of a straight line.

(iv) [2 points] Show that the total angular deflection of the photon can be expressed as

δ =
2rs
r0
.

You may assume that when x is very small, we have sinx ≈ tanx ≈ x and cosx ≈ 1.

Solution. Let δ be the deflection angle. Then half the deflection angle is δ
2 , then we have

cos
(
π
2 + δ

2

)
r0

+
rs
r2

0

= 0.

By a well-known trigonometric identity, we have

cos

(
π

2
+
δ

2

)
= − sin

δ

2
.

Hence,

− δ

2r0
+
rs
r2

0

= 0,

13



i.e. δ = 2rs
r0

.

(v) [2 points] Suppose we have an event where a black hole passes in front of a star such that

the star, the black hole and Earth forms a straight line. This situation is modelled in the

diagram below.

Figure 2: The scenario.

Suppose the black hole is located DBE away from Earth and the distance from the black

hole to the star is DSB. Show that the following relation holds:

rs =
1

2
r2

0

(
1

DBE
+

1

DSB

)
.

(Hint: First, use the small angle approximation sinx ≈ tanx ≈ x. Then, note that if the

angle is sufficiently small, the intersection point between two dashed lines should be really

close to the point of closest approach.)

Solution. We have δ = α1 + α2. Now, by small angle approximations,

tanα1 ≈ α1 ≈
r0

DBE
,

tanα2 ≈ α2 ≈
r0

DSB
.

Therefore, we get

δ = r0

(
1

DBE
+

1

SB

)
.

Therefore, we have

2rs
r0

= r0

(
1

DBE
+

1

SB

)
,

so that

rs =
1

2
r2

0

(
1

DBE
+

1

SB

)
.
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(vi) [2 points] Suppose we have an event where a black hole located 7.5 × 1020 m away from

Earth passes in front of a star 3.0 × 1021 m away from Earth. It is observed that the

angular deflection of the star image observed from the Earth (often called the angular

Einstein radius, denoted by α1 in the figure) is 0.025 arcseconds. Calculate the mass of

the black hole in terms of solar masses.

Solution. First note that rs = 2GM
c2

and r0
DBE

= α1. Hence by substituting into the

equation of the previous part, we obtain

23GM

c2
=

1

2
α2

1

DBE

DSB
(DBE +DSB).

Manipulating and substituting values, we obtain

M =
(α1c

2

)2 DBE(DBE +DSB)

GDSB

= 4.95× 1033 kg

= 2490M�.
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Part 2: Hawking Radiation (Sub-total: 10 points)

If only classical physics is taken into account, black holes cannot emit radiation and their

blackbody temperature can thus be considered to be zero. However, Stephen Hawking showed

in his paper in 1974 that when quantum corrections are considered, black holes emit radiation

according to the black-body spectrum. The corresponding black-body temperature is known

as the Hawking temperature, TH . For a Schwarzschild black hole of mass M , the Hawking

temperature can be written as

TH =
~c3

8πGkBM
,

where ~ is the reduced Planck’s constant, G is the gravitational constant, and kB is Boltzmann’s

constant.

According to the second law of thermodynamics, entropy of an isolated system never de-

creases. The definition of entropy S associated with a physical body is

dU = T dS,

where U is the internal energy of the body and T is the temperature of the body. In the case

of a black hole, we may assume that the internal energy is the energy related to its mass (i.e.

via Einstein’s famous formula), and T is the black-body temperature.

(vii) [2 points] Show that the entropy of a black hole may be expressed as

S = KM2,

where K is some constant. Write the value of this constant in terms of c,G, ~, and kB.

Solution. We have dS = dU
T and dU = c2 dM . Hence,

dS = s
c2 dM
hc3

8πGkBM

=
8πGkB

~c
M dM.

When M = 0, there is no black hole and no entropy, hence S = 0. It follows that

ˆ S

0
ds =

8πGkB
~c

ˆ M

0
mdm,

i.e.

S =
4πGkB

~c
M2.

But this is precisely the form needed, with K = 4πGkB
~c .

A merger of two black holes was recently detected by Kip Thorne, Rainer Weiss, and Barry

Barish, the winners of the 2017 Nobel Prize in Physics. The first detection of gravitational

waves came from the merger of two black holes each with a mass equal to 30 solar masses,

located at a distance of 1.3× 109 ly from Earth.
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(viii) [2 points] Assuming that the kinetic energy of the black holes are negligible compared to

their rest energy when they collide, show that if two black holes with the same mass collide

to make a bigger black hole, at most 30% of their initial rest energy can be converted to

gravitational wave radiation.

(Hint: The entropy of an isolated system never decreases.)

Solution. Let Si and Sf denote initial and final entropies respectively. We have

KM2
f = Sf ≥ Si = 2KM2,

from which we obtain Mf ≥
√

2M . Hence, the maximum ratio of energy transferred to

the gravitational waves is

r =
2Mc2 −

√
2Mc2

2Mc2
=

2−
√

2

2
= 0.292 · · · < 0.30.

(ix) [1 point] Hence or otherwise, give an upper bound for the energy flux expected to pass

through a detector situated on Earth in mJ m−2.

Solution. We have

φ =
E

4πd2
=

2−
√

2

2

2Mc2

2πd2
≈ 1.65 mJ m−2 .
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We will now consider black hole evaporation. Assuming that there is no in-falling matter or

energy, a black hole will slowly radiate away its mass through Hawking radiation. Although a

correct treatment of the evaporation process at high energy scales requires a theory of quantum

gravity, as long as TH is below the Planck scale, the semi-classical approach we have been

using so far suffices. In what follows, we will obtain an estimate of the black hole evaporation

timescale; this will be an estimate for the lower bound on the evaporation process duration.

You are given that the value of Stefan-Boltzmann constant is

σ =
π2k4

B

60~3c2
.

(x) [1 point] Determine the power radiated by a black hole as a function of mass, assuming

that the effective area is the area of the event horizon.

Solution. We have

P = σT 4
H(4πr2

s)

=
π2κ4

B

60~3c2

(
~c3

8πGkBM

)4(
4π

4G2M2

c4

)
=

~c6

15360πG2M2
.

(xi) [2 points] Hence, or otherwise, calculate the evaporation time of a black hole with the

same mass as the Sun in seconds. Comment on the result with a suitable comparison.

Solution. We have P = −dU
dt . Hence,

− ~c6

15360πG2M2
=
dU

dt
=
c2 dM

dt
.

Let the time for complete evaporation be t′. Then,

t′ =

ˆ t′

0
dt = −15360πG2

~c4

ˆ 0

M
m2 dm =

5120πG2

~c4
M3 = 6.6× 1074 s .

This is much larger than the age of the universe.

Next, consider a black hole exposed to the Cosmic Microwave Background (CMB) radiation.

You may assume that the CMB radiation is a black-body radiation with a temperature TCMB ≈
2.8 K that fills the entire universe. The black hole will therefore lose energy from Hawking

radiation and absorb energy from the CMB radiation according to the Stefan-Boltzmann law.

(xii) [1 point] When a black hole reaches a certain critical mass MC , the net power radiated

by the black hole is exactly zero. This is often called the equilibrium condition. Calculate

this critical mass in kg. Name an astronomical object which has a similar mass, up to one

order of magnitude.

Solution. Clearly, the equilibrium occurs when TH = TCMB, i.e.

TCMB =
~c3

8πGkBMC
.
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Then,

MC =
~c3

8πGkBTCMB
= 4.38× 1022 kg .

This is approximately 0.6 times the mass of the moon.

(xiii) (a) [0.5 points] Is the equilibrium mentioned above in Part (xii) stable or unstable?

(b) [0.5 points] Comment on the value obtained in Part (xi) in relation to the above

conclusion.

Solution. Note that when M > MC , TH < TCMB, so all black holes with mass larger

than MC will have temperature lower than the CMB radiation. This means that it will

gain energy from the CMB radiation, resulting in an increasing mass. Conversely, when

M < MC , TH > TCMB, and thus the black hole will evaporate. We conclude that the

equilibrium is unstable.

This means that the time for a black hole to evaporate will be even greater than what we

calculated in Part (xi), since we need to wait for the CMB to cool down until TH > TCMB

for the black hole to start evaporating.
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Question 3

The Red Distance

(Total: 20 points)

Introduction

It is a well-known fact that nothing travels faster than light (except for fictional objects like

the Starship Enterprise). Consequently, in light of the age of the universe being approximately

13.7 billion years, it comes as a surprise to most first-time astronomers to learn that the radius

of the observable universe is approximately 46.5 Gly.

Of course, astronomers like those in this competition know that this discrepancy is due to

the expansion of space. In this question, we will look at how expansion of space affects our

intuitive notion of distance.

Part 1: Relativistic Redshift (Sub-total: 7 points)

Distances of objects near the edge of the observable universe are often difficult to measure

precisely, due to observational limitations. For this reason, amongst others, distances from

Earth to such objects are often measured in terms of their relativistic redshifts. The relativistic

redshift z of a moving object in the radial direction is given as

1 + z = γ
(

1 +
v

c

)
,

where γ is the Lorentz factor and v is the velocity of the object moving away from the observer

in the radial direction.

(i) [2 points] There are three main types of redshifts, but the redshift we are primarily

concerned with in this question is cosmological redshift. Explain the phenomena of cos-

mological redshift.

Solution. Cosmological redshift is the phenomenon of whereby distant cosmological ob-

jects are perceived to have a redshift. This redshift is due to the perceived receding

velocity due to the expansion of the universe stretching the wavelength of light.

Using this formula, one can determine “distances” from the observer to the object. This is

done by interpreting cosmological redshift as a receding velocity. That is to say, suppose we had

an object at an extreme distance. To this distance we may associate a “rate at which the object

is moving away from us” due to the expansion of space. This rate of recession is expressed as

a receding velocity, and we may utilise the relativistic redshift formula to compute the proper

distance from the object to us.

(ii) [3 points] Assume that a distant object is completely stationary, such that any perceived

motion is solely due to cosmological expansion. Prove that the (proper) distance d from

the observer to the object is given by

d = C · (1 + z)2 − 1

(1 + z)2 + 1
,
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where C is some expression in terms of known quantities to be determined. In your

answer, you should state an expression for C, with reference to the Formula Booklet, or

otherwise.

Solution. Since the object is completely stationary, it suffices to consider the receding

distance due to universal expansion. Recall that v = H0d, where H0 is the Hubble

parameter today. Let H0
c = k. Then, expanding the given equation, we have

1 + z =
1√

1− k2d2
(1 + kd) =

√
1 + kd

1− kd
.

Squaring,

(1 + z)2 =
1 + kd

1− kd
.

Then we can rearrange and obtain

(1 + z)2 − (1 + z)2kd = 1 + kd,

from which we obtain

d =
1

k

(1 + z)2 − 1

(1 + z)2 + 1
,

so that C = 1
k = c

H0
. The proof is complete.

(iii) [2 points] Hence or otherwise, explain why C cannot remain constant with time. Compute

the value of C today based on the formula booklet.

Solution. Suppose C remained constant with time. This means H0 would be constant with

time. Then the equation v = H0d would be constant with time, i.e. for fixed d the rate

of expansion is constant with time. Clearly this is in contradiction with the accelerating

rate of expansion of the universe.

Alternatively, since H = a′(t)
a(t) , H cannot remain constant with time as the expansion of

the universe is accelerating.

In either explanation, the key point is an accelerating expansion.

The value is

C =
c

H0
≈ 4.42 Gpc .

(Note: Accept a range from 4.37 Gpc to 4.47 Gpc, due to uncertainty in provided H0

value.)

Part 2: Let’s Hubble Along (Sub-total: 4 points)

The concept of measuring a “distance” takes a rather interesting turn, pun intended, when we

approach the edge of the observable universe. To further define distances in a proper fashion,

however, we first need to consider the Hubble parameter H. The Hubble parameter is a function

of the redshift z, and so we write it H(z) without loss of generality. The derivation of the Hubble
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parameter comes from Einstein’s field equations, but we save you all this work and give you the

final result. It is given by

(H(z))2 =
8πG

3
ρ− kc2

a2
+

Λc2

3
,

where G is the gravitational constant, ρ is the mass density of the universe, k is the normalised

spatial curvature of the universe, Λ is the cosmological constant, and a = 1
1+z is the scale factor.

This is also known as Friedmann’s second equation.

A bit needs to be said about the scale factor a. It relates the proper distance (see Part 3

for an explanation) between two objects. If at the present time we receive light from a distant

object with redshift z, the scale factor at the time the light originated from the object is a = 1
1+z .

(iv) [1 point] Explain why the relation d(t) = a(t)d0 holds, where d0 = a(t0) is the distance at

some reference time, and t is time taken with reference to t0.

Solution. This is simply a mathematical fact. At a time t > t0, the distance between two

objects has changed (i.e is scaled) by precisely the scale factor a(t). So d(t) = a(t)d0.

(v) [3 points] Suppose that the universe is matter-dominated with density of matter today at

ρ0. It is given that

ρc =
3H2

0

8πG
, Ωm =

ρ0

ρc
, Ωk = −kc

2

H2
0

, ΩΛ =
Λc2

3H2
0

.

Here, H0 is the Hubble constant today. Show carefully that

H(z) = H0E(z),

where

E(z) =
√
B(1 + z)3 + C(1 + z)2 +D,

and B,C,D are constants to be determined in terms of the four quantities provided above.

Solution. Since we assume the universe is matter-dominated, the mass density of the

universe can be simply taken to be the density of matter multiplied by the inverse of the

cube of the scale factor, so that

ρ =
ρ0

a3
.

Then, we have

ρ =
ρcΩm

a3
=

3H2
0 Ωm

8πGa3
.

Now, by direct manipulation we have

−kc2 = H2
0 Ωk
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and

Λc2 = 3H2
0 ΩΛ.

By direct substitution into Friedmann’s second equation, then we have

(H(z))2 =
H2

0 Ωm

a3
+
H2

0 Ωk

a2
+H2

0 ΩΛ

= H2
0 (Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ).

Taking square roots yields

H(z) = H0

√
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ,

so B = Ωm, C = Ωk, D = ΩΛ, and E(z) =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ.
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Part 3: Too Far Away! (Sub-total: 9 points)

There are three types of distances we shall now contend with: the proper distance, the comoving

distance, and the light travel distance.

The proper distance between two objects is the separation of the two objects measured at

a specific cosmological time. Loosely speaking, it is the distance between the objects factoring

in cosmological expansion. The proper distance changes with time.

The comoving distance, on the other hand, is the separation of the two objects measured at

the current cosmological time. Loosely speaking, it is the distance between the objects factoring

out cosmological expansion. The comoving distance does not change with time. To define a

comoving distance, we need to fix a time T and measure proper distance at that time T . That

becomes the comoving distance.

In short, while proper distance can be likened to a movie, the comoving distance can be

likened to taking a frame, or a snapshot, of an instant in the said movie.

The light travel distance is the time taken for light to reach from the object to us, multiplied

by the speed of light.

Figure 3: A nice illustration of the three distances we found on Google. Here, emission distance
is the comoving distance with respect to temit, and also the proper distance at that time. Today’s
distance is the proper distance today.
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(vi) [1 point] Using a simple example, or otherwise, demonstrate that light travel distance is

distinct from the proper distance.

Solution. For instance, consider an object perhaps 13.3 billion years old. Light took 13.3

billion years to arrive, so the light travel distance is 13.3 Gly. But the proper distance is

very much further (relatively near the edge of the observable universe).

(vii) [4 points] Suppose the Hubble constant today is H0. Let dH = c
H0

be the Hubble distance.

Show that the comoving distance dC satisfies

dC(Z) = dH

ˆ Z

0

1

E(z)
dz,

where dC(Z) is the comoving distance of an object with cosmological redshift Z.

(Hints: One way to do this is to start by considering expressing dC using c and a. Note

that for a given object, the redshift Z is a function of time, and vice-versa (since space is

expanding). At some point in your answer, you may find the relation H(t) = a′(t)
a(t) useful.)

Solution. The RHS is equivalent to

ˆ Z

0

c

H(z)
dz.

We consider photons. Let a be the scale factor. The comoving distance can then be

expressed as an integral over time for which photons travel to us, i.e.

dC(Z) =

ˆ t

0

c

a(t)
dt.

Consider, then, that 1 + z = 1
a(t) . With the hint, we have

dz = − 1

a(t)2
a′(t) = −H(t)

1

a(t)
dt.

By substitution,

dC(Z) =

ˆ Z

0

c

H(t)
dz.

Rewriting H in terms of z completes the proof, since H(z) = H0E(z).

(viii) [3 points] Find a similar expression for the light travel distance dT (Z).

(Hint: At some point in your answer, you may find the following rule useful. If f(x) =´ x
0 g(s) ds, then f ′(x) = g(x).)

Solution. The answer is

dT (Z) = dH

ˆ Z

0

1

(1 + z)E(z)
dz.

The idea is similar to the above. We consider the radial distance. The light travel distance
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is given by

dT (Z) =

ˆ r

0

a(t)

c
dr.

(This is done by considering photons again travelling along the radial direction. One

obtains the relation

c

a(t)
dt = − dr,

where the negative sign simply implies directionality towards the origin.)

Notice that r in this instance is the comoving distance. That is, r(z) = dC(z); it’s just

different ways of writing the same quantity. Now, by rewriting the integrating variable

from the previous part, we have

r(z) =

ˆ z

0

c

H(ζ)
dζ,

from which we obtain by the hint that

dr =
c

H(z)
dz.

With this substitution,

dT (Z) =

ˆ r

0

a(t)

c
dr =

ˆ Z

0

a(t)

c

c

H(z)
dz =

ˆ Z

0

1

(1 + z)E(z)
dz.

(ix) [1 point] Explain why the age of the universe is given as

lim
z→∞

dT (z)

c
.

Solution. As we approach the edge of the observable universe, z → ∞. The light travel

distance to the edge is lim
z→∞

dT (z), and so the time taken is lim
z→∞

dT (z)
c , i.e. this is the age

of the universe.
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Question 4

A Study of the Big Dipper

(Total: 20 points)

Part 1: Introduction (Sub-total: 8 points)

The Big Dipper is well known across many cultures since antiquity. Some details about the Big

Dipper are provided below.

Figure 4: The Big Dipper.

Star Apparent Magnitude m Right Ascension Declination

Dubhe +1.79 11h 03min +61◦ 45′

Merak +2.37 11h 01min +56◦ 22′

Phad +2.44 11h 53min +53◦ 41′

Megrez +3.31 12h 15min +57◦ 01′

Alioth +1.77 12h 54min +55◦ 57′

Mizar +2.27 13h 23min +54◦ 55′

Alkaid +1.86 13h 47min +49◦ 18′

Table 2: Stars of the Big Dipper.
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(i) Modern astronomers label the Big Dipper as an asterism.

(a) [1 point] Define an asterism.

(b) [1 point] State an example of an asterism other than the Big Dipper.

Solution. An asterism is simply a pattern of stars in the night sky.

There are a number of other asterisms, e.g. Winter Hexagon, Northern Cross, Summer

Triangle, and so on.

(Note: Accept any reasonable answer.)

(ii) [2 points] It is well known that one can find Polaris simply by extending a line from Merak

to Dubhe. This is merely one of the ways where the Big Dipper serves as an important

signpost to other bright stars. Explain how one can use the Big Dipper to find two other

bright stars (except Polaris).

Solution. The handle of the Big Dipper arcs to Arcturus and then speeds on to Spica.

Alternatively, a line from Megrez to Phad leads to Regulus (but this is not so easy to

remember).

(Note: Accept any reasonable answers.)

(iii) The Big Dipper is placed in the far northern sky, making it difficult for southern observers

to see. Below is a list of four cities in Australia and New Zealand.

City Latitude Longitude

Hobart, AU 42◦ 52′ S 149◦ 19′ E

Brisbane, AU 27◦ 28′ S 153◦ 02′ E

Auckland, NZ 36◦ 50′ S 174◦ 44′ E

Wellington, NZ 41◦ 17′ S 174◦ 46′ E

Table 3: Cities in Australia and New Zealand.

(a) [1.5 points] Which of these cities cannot see any star of the Big Dipper?

(b) [1.5 points] Which of these cities can only see part of the Big Dipper over the course

of an entire day?

In answering the above two parts (a) and (b), you should show your working. You may

ignore atmospheric extinction and assume a flat horizon.

Solution. The southernmost star of the Big Dipper is Alkaid. With a declination of

+49◦ 18′, it never rises south of (90◦ 0′ − 49◦ 18′) S = 40◦ 42′ S. This means that the Big

Dipper is invisible from Hobart, AU and Wellington, NZ.

It is easier to first consider which cities can see all of the Big Dipper. Dubhe, the north-

ernmost star of the Big Dipper, never rises south of (90◦ 0′ − 61◦ 45′) S = 28◦ 15′. This

means that Brisbane, AU can see all of the Big Dipper. Thus, out of the 4 cities, only

Auckland, NZ is able to see a partial Big Dipper.
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(iv) [1 point] To the naked eye, the stars of the Big Dipper have noticeably different bright-

nesses. How much brighter is the brightest star of the Big Dipper compared to its faintest

star? Express your answer in percentages.

Solution. From the table, the brightest (Alioth) and faintest (Megrez) stars have mag-

nitudes of +1.77 and +3.31 respectively. The formula sheet contains a formula linking

luminosity and absolute magnitude; that same relationship links brightness and apparent

magnitude. Therefore,

B1

B2
= 10

m1−m2
2.5 = 10

3.31−1.77
2.5 = 4.13 = 413%.
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Part 2: Starry Night Over the Rhône (Sub-total: 12 points)

The Big Dipper is prominently featured in Vincent Van Gogh’s Starry Night Over the Rhône.

Painted in September 1888, it features the city of Arles, France at night.

Figure 5: Van Gogh’s Starry Night Over the Rhône. Truly a work of art.

But what time is it? Using the night sky depicted here, we can recover the time of night

that Van Gogh was trying to faithfully depict.

(v) [2 points] By matching the features of the cityscape with actual landmarks, we know that

this was painted from Arles at the coordinates 43◦ 41′N, 4◦ 38′ E. From this point, the

Big Dipper is circumpolar. What is the lowest altitude reached by any part of the Big

Dipper when it skims the horizon?

Solution. It should be obvious that the southernmost star (Alkaid) will have the lowest

possible altitude. There is a formula to obtain this altitude, but it is far more instructive

to explain the underlying process in words.

• We know the altitude of the North Celestial Pole. It is located at 43◦ 41′.

• Alkaid is 90◦ 0′ − 49◦ 18′ = 40◦ 42′ south of the North Celestial Pole

• Thus, the lowest altitude occurs when Alkaid lies on the lower local meridian, directly

below the North Celestial Pole. At this point, its altitude is 43◦ 41′−40◦ 42′ = 2◦ 59′.

(vi) For simplicity, let us assume that this work was painted on the autumnal equinox (Septem-

ber 22).
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(a) [1 point] On this date, what is the approximate right ascension of the Sun to the

nearest minute?

(b) [1 point] Briefly explain your answer.

Solution. Recall that 0h 00min is defined by the position of the Sun at the vernal equinox

(i.e. the first point of Aries). Since exactly half a year separates the autumnal equinox

from the vernal equinox, the right ascension of the Sun then is simply 180◦ away from

0h 00min, i.e. it lies at 12h 00min.

(vii) [2 points] Define the hour angle as the number of hours since the object passed the upper

local meridian. This means that when an object is at the highest point in the sky, it has

an hour angle of 0h 00min.

With this in mind, estimate the hour angle of Merak/Dubhe to the nearest minute. In

your answer, you should state a suitable assumption/simplification that you need to make.

Solution. Since the line connecting Merak/Dubhe is almost exactly perpendicular to the

horizon, let us assume Merak/Dubhe lies on the lower local meridian (i.e. their lowest

possible altitude). This implies that their hour angle is 12h 00min.
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For the rest of this DRQ, you may treat Merak and Dubhe as sharing the same right ascension

of 11h 02min.

(viii) [1 point] Hence or otherwise, determine the hour angle of the Sun during the moment

depicted in this painting.

Solution. If the Sun has a known RA of 12h 00min, we know that it rises 58 minutes later

than Merak/Dubhe, since Merak and Dubhe have a known RA of 11h 02min. Thus, if we

know the hour angle (HA) of Merak/Dubhe is 12h 00min, the Sun must be 58 minutes

behind, giving us a HA of 11h 02min.

(ix) [2 points] For simplicity, let us define sunset as the point in time when the apparent centre

of the Sun touches the horizon, ignoring atmospheric refraction. In Greenwich, UK, sunset

on September 22nd occurs at 1753h (Greenwich Mean Time, a.k.a. GMT). When would

sunset be if we were displaced 4◦ 38′ E from Greenwich? Give your answer in GMT.

Solution. If the Earth rotates 360◦ degrees in a day, it takes

4◦ 38′

360◦
× 24 hours = 18.5 minutes

to rotate by 4◦ 38′.

Since the new location lies east of Greenwich, sunset occurs earlier than Greenwich. Thus,

the sunset occurs 18.5 minutes before 1753h, giving us 1734h or 1735h, depending on how

you round your answer.

(x) [2 points] An astute observer notes that Arles and Greenwich are at different latitudes.

Hence, the answer found in Part (ix) may not necessarily correspond to the actual sunset

time at Arles in GMT. Is this a major concern? Explain your answer.

Solution. No, it is not.

Recall that it is currently the autumnal equinox. Since the Sun is on the celestial equator,

the length of day is approximately the same around the world (excluding pathological

cases like the poles).

Due to these special circumstances, sunset in Greenwich does not occur appreciably ear-

lier/later than in Arles, after adjusting for the difference in longitude.

(xi) [1 point] Assume your answer in Part (ix) is correct. Hence, find the exact time depicted

in this painting, in GMT.

Solution. Since the Sun is on the celestial equator, when the Sun set, it had a HA of

6h 00min. At the time depicted in the painting, the sun had a HA of 11h 02min. This

means the scene depicted here occurs 5h 02min after sunset, or around 2236h or 2237h.

Because the proof is in the pudding, here is the result when you key in the exact date,

time and location in Stellarium.
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Question 5

Alice and Bob Circling in the Sky

∼A Story of Binary Star Systems∼
(Total: 20 points)

Introduction

In a faraway land in outer space, in the constellation of Gemini lies the two stars, Alice and

Bob. This is a love story of Alice and Bob, two binary stars circling in the heavens above. From

our astronomical observations, it is found that most stars indeed do come in pairs (as most

good things do), unlike our lonely parent star, the Sun. The study of these binary systems is

hence an important research in understanding the formation of star systems in nebulae.

In the following questions, you may assume that the plane of orbit is parallel to the plane

of observation.

Figure 6: Alice and Bob (not drawn to scale) circling.

Part 1: Celestial Mechanics (Sub-total: 9 points)

Let Alice and Bob have mass MA and MB, and radius RA and RB respectively, as shown in

the diagram (the subscripts A and B refers to Alice and Bob respectively). Note that Alice and

Bob have different masses MA > MB.

(i) [2 points] The distance to the centre of mass as measured from the primary star Alice is

a1. Express a1 in terms of the distance a between the two stellar centres, MA, and MB.
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Solution. We have the system

a1 + a2 = a,

GMAMB

a2
−MAa1ω

2 = 0,

GMAMB

a2
−MBa2ω

2 = 0.

From this it follows that

MAa1 = MBa2 = MB(a− a1),

so we get

a1 =
MBa

MA +MB
.
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Consider the following graph of radial velocity against phase of Alice and Bob.

Figure 7: Alice and Bob’s phase graph.

It is found from observation that the distance between the two stars (centre of mass to centre

of mass) is 0.062 AU.

(ii) [3 points] Determine the masses MA and MB of Alice and Bob respectively in solar units.

Solution. We have

vA
vB

=
MB

MA
=
a1

a2
=

40× 103

200× 103
=

1

5
.

Furthermore, r = 0.062× 1.5× 1011. We also have that a1 + 5a2 = a. Also note that

M� = 2× 1030,

R� = 6.69× 108.

Hence,

ω =
240× 103

r
.

Now,

MB =
1

G
× r3ω2

6
× 1

M�

Also, MA = 5MB. Hence, MB = 0.669M� and MA = 3.346M�.
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(iii) [3 points] It was found that the surface temperature of Alice and Bob are 13000 K and

4500 K respectively. Using the results in Part (ii) and the Stefan-Boltzmann law, deter-

mine the radius RA and RB of Alice and Bob in solar units. State all assumptions used

in your calculations.

Solution. Assuming that Alice and Bob are main sequence stars,

L ∝M3.5.

Hence,

LA
L�

=

(
RA
R�

)2(TA
T�

)4

= 3.3463.5,

LB
L�

=

(
RB
R�

)2(TB
T�

)4

= 0.6693.5.

It follows that

RA
R�

=

√
3.3463.5

(
T�
TA

)4

= 1.64,

RB
R�

=

√
0.6693.5

(
T�
TB

)4

= 0.816.

(iv) [1 point] Why can we use the Stefan-Boltzmann law in our calculation?

Solution. The Stefan-Boltzmann law expresses the relationship between the luminosity

of a spherical black-body and its temperature, while a star is assumed an almost perfect

black-body. Hence, we can use the Stefan-Boltzmann law.
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Part 2: Gravitational Waves (Sub-total: 11 points)

In another universe (if you buy into the idea of the multi-verse), Alice and Bob are in fact two

neutron stars that are spiralling into each other. The story of Alice and Bob could develop

into either of two fates: they merge to form a new neutron star, or they merge and become a

black hole. Understanding the fate of the merger requires us to develop an understanding of

the in-falling process.

Data of Alice and Bob was collected from ground base observatories, monitoring their dy-

namical relationship. It is understood that due to the densities of the neutron stars, the orbit

has an initial period P0 of approximately 7.752 hours. Furthermore, Alice is in fact a pulsar,

emitting strong electromagnetic radiation in the radio-wave spectrum. We observe instances

that Alice returns to the periastron, and call that the Time of Periastron Passage. Given that

the orbit is decaying, the period Pn after n periastron passages is smaller than the initial value

P0.

(v) [2 points] The periastron refers to the point of closest approach between the binary stars.

It is equivalent to the perigee of a satellite (natural or man-made) orbiting the planet.

Using this information, sketch a diagram depicting the orbit of the two neutron stars. In

your diagram, you should label the periastron and apastron.

Solution. Note: The below diagrams are to be combined into a single diagram in your

answer. They are split here for clarity purposes.
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(vi) [1 point] Suggest a possible cause of the orbital decay.

Solution. Given that they are neutron stars, the cause of orbital decay is naturally due

to the emission of gravitational waves (Hulse and Taylor).

From theoretical calculations, the time between the 0th and N th periastron, TN , can be

expressed as an equation

TN
P0

=
N∑
i=1

(1 + Ṗ )i.

Note that Ṗ is the time derivative of P , the orbital period.

(vii) [2 points] Expand the summation and show that given that Ṗ is extremely small, the

summation may be approximated as

TN
P0

= N +
N(N + 1)

2
Ṗ .

Solution. We may ignore Ṗ terms of power 2 and higher, since Ṗ is very small. Hence,

TN
P0

=
N∑
i=1

(1 + Ṗ )i

≈
N∑
i=1

(1 + iṖ )

= N + Ṗ

N∑
i=1

i

= N +
N(N + 1)

2
Ṗ .

where in the last line we make use of the identity for 1 + 2 + · · ·+N .

(viii) [6 points] Hence, the change in the orbital period after i periastrons is

∆ti = Ti − T0 =
i(i+ 1)

2
P0Ṗ .

Complete Table 4, linearise the above equation, and plot an appropriate graph to obtain

the observed value of Ṗ .

(Note: You should detach the table provided and attach it to your answer script.)

39



This page is intentionally left blank.

40



Detach this page and attach it to your answer script.

Approximate Date
Time of Periastron

Passage (JED – 2,440,000)

Number of Hours
Between 2

Observations

Number of Complete
Orbits Between 2

Observations
Actual Cumulative
Completed Orbits ∆ti

1974.77 2331.446 0 0 0 0

1974.93 2389.586 1395.349 180 180 −0.000883681

1976.13 2826.924 10496.126 1354.000036 −0.063867225

1976.93 3118.591 7000.001 903.0000096 −0.161151198

1977.58 3356.640 5713.179 737.0000111 −0.27333482

1977.96 3493.591 3286.822 424.0000088 −0.351226531

1978.23 3593.397 2395.349 309.0000019 −0.414135323

1978.42 3663.488 1682.171 217.0000065 −0.46140991

1978.82 3807.544 3457.365 446.0000028 −0.566593685

1979.31 3988.423 4341.086 560.0000059 −0.713943244

1980.10 4276.537 6914.730 892.0000106 −0.983779849

1980.59 4454.509 4271.319 551.0000043 −1.172027064

1980.59 4455.477 23.256 3.000000635 −1.173097083

1981.14 4656.382 4821.706 622.000003 −1.405491826

Table 4: Table for Part (viii).
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Solution. The linearised equation is

log ∆ti = log(i(i+ 1)) + log

(
1

2
P0Ṗ

)
.

The y-intercept would then be log
(

1
2P0Ṗ

)
. The gradient of the line is m = 1.

The value of Ṗ is −1.9× 10−12 seconds per second (this is determined from the graph, see

following two pages).

(Additional note: The graph of ∆t against cumulative periastron i is as follows.

The interested reader is encouraged to check out this link for more details on this question.)
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Approximate Date
Time of Periastron

Passage (JED – 2,440,000)

Number of Hours
Between 2

Observations

Number of Complete
Orbits Between 2

Observations
Actual Cumulative
Completed Orbits ∆ti

1974.77 2331.446 0 0 0 0

1974.93 2389.586 1395.349 180 180 −0.000883681

1976.13 2826.924 10496.126 1354.000036 1534 −0.063867225

1976.93 3118.591 7000.001 903.0000096 2437 −0.161151198

1977.58 3356.640 5713.179 737.0000111 3174 −0.27333482

1977.96 3493.591 3286.822 424.0000088 3598 −0.351226531

1978.23 3593.397 2395.349 309.0000019 3907 −0.414135323

1978.42 3663.488 1682.171 217.0000065 4124 −0.46140991

1978.82 3807.544 3457.365 446.0000028 4570 −0.566593685

1979.31 3988.423 4341.086 560.0000059 5130 −0.713943244

1980.10 4276.537 6914.730 892.0000106 6022 −0.983779849

1980.59 4454.509 4271.319 551.0000043 6573 −1.172027064

1980.59 4455.477 23.256 3.000000635 6576 −1.173097083

1981.14 4656.382 4821.706 622.000003 7198 −1.405491826

Note that the number of complete orbits calculated using the initial period is larger than the actual value, and the actual number of cumulative

completed orbit should be rounded down.
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Appendix A

(Adapted from AC 2015 SNR DRQ Q5: Seasons in the Sun)

In astronomy, the concept of the Hour Angle (HA) is often used. In general, the HA

is the angular distance of a point measured westward from the Local Meridian (the upper arc

connecting the zenith to the celestial poles).

The HA can be expressed in terms of angles (degrees/radians/arcseconds etc.), or units

of time like hours/minutes/seconds. If we adopt the latter convention, the HA represents

the amount of time since the object last crossed the meridian. Indeed, hour angles are often

expressed in this form. A diagram for an observer in the Northern Hemisphere is shown below.

For clarity, the South Celestial Pole has been omitted.

Determining the HA for any object at a specific time can be computationally demanding.

However, calculations for the Sun are greatly simplified if we use solar time, as we can use more

natural units. For example, the Sun has an HA of 0 hours at solar noon (as it must be on the

Local Meridian then).
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